
FLEXION

I - Sollicitations :

On rencontre :


 - la flexion pure





- la flexion plane simple





- la flexion déviée





- la flexion composée

On étudiera la flexion plane simple, et quelques cas de flexion composée.

II - Mise en évidence :


II - 1 : Hypothèses :

Ÿ Solide : matériau homogène et isotrope, poutre rectiligne, section droite constante avec plan de symétrie longitudinal.

Ÿ Forces : appliquées dans le plan de symétrie longitudinal et perpendiculaire à l’axe de la poutre. Les forces peuvent être  soit localisées, soit réparties.

Ÿ Déformation : On reste dans le domaine élastique et les déformations sont faibles. Les sections droites restent planes et perpendiculaires à l’axe de la poutre.


II - 2 : Expériences :

· Variation de la flèche  : déplacement d’un point dans une direction perpendiculaire à l’axe. On constate que la flèche est proportionnelle à l’effort.

· Déformations longitudinales :

- la mise en évidence des déformations longitudinales se fait par extensométrie (jauge de déformation)

- La section S ne bouge pas

- La section S1 passe en  S1’

- La droite GG’ à mi hauteur ne change pas de longueur, c’est la ligne neutre, le plan horizontal contenant cette ligne est le plan neutre.

- Il existe dans chaque section droite des contraintes normales de traction ou de compression, ces contraintes sont proportionnelles à la distance au plan neutre 

- L’allongement relatif des fibres est proportionnel à sa position « y » 
[image: image1.wmf]
III – Relation contrainte – Moment féchissant :
III – 1 : Contrainte normale :

La déformation en flexion pure se caractérise par une rotation des sections droites les unes par rapport aux autres autour d’axes perpendiculaires au plan neutre de la poutre.

Prenons une poutre de longueur “dx”

III – 2 : Moment fléchissant : 

Après avoir déterminé les inconnues de liaison (par PFS), s’appliquant sur la poutre isolée, 

- Isolons un tronçon de poutre situé à gauche de la section droite.


Bilan des Actions Mécaniques

- Equations d’équilibre 


III - 3 : Contrainte normale maximale :

Il y a répartition linéaire des contraintes. Les contraintes maximales se trouvent sur les lignes les plus éloignées de la surface neutre.

Si on appelle “v” la plus grande distance de la matière à l’axe neutre “v = ymax”
Le terme de 
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 est appelé module de flexion (mm3) ou encore module de résistance de la section à la flexion.


III – 4 : Condition de résistance :

La contrainte calculée doit être inférieure à la résistance pratique


- pour les lignes de la poutre sollicitées à l'extension


- pour les lignes de la poutre sollicitées à la compression [image: image3.wmf]
Remarque : Pour les poutres possédant deux axes de symétrie perpendiculaires, la seconde équation est pratiquement toujours vérifiée si les calculs se sont effectués à partir de la première.

En effet lorsque Rpc est différent de Rpe , Rpc est plus grand que Rpe

Re = Rec matériaux homogènes isotropes non fragiles

Rec= 3.Re pour les matériaux fragiles


III - 5°: Contrainte dû à l’effort tranchant :

Les contraintes tangentielles  sont toujours faibles par rapport aux contraintes normales  dans le cas de la flexion simple.

Ainsi pour une poutre fléchie, on vérifie uniquement cette poutre à la contrainte normale maximale max.

IV - Effort tranchant - Moment fléchissant :
Soit une poutre soumise à une charge P, en considérant la section A-A, située à la distance “x” de l’origine du système de coordonnées, et en étudiant l’équilibre du tronçon situé à gauche de la section A-A. Les actions de la partie de droite sur la partie de gauche se réduisent à un effort tranchant Ty et un moment fléchissant Mfz

IV - 1 : Diagrammes :

[image: image4.wmf]
IV – 2 : Relations différentielles d’équilibre :

Ce sont des relations liant l’effort tranchant, le moment fléchissant au chargement de la poutre.

Considérons un tronçon de poutre de longueur “dx” chargée avec une charge répartie de taux de charge “q(x)” porté par “y”


Il y a donc relation entre le diagramme des efforts tranchants et celui des moments fléchissants. Le diagramme de l’effort tranchant représente la pente du moment fléchissant changée de signe.

V - Etude des déformations :
V - 1 : Relation différentielle de base :

Or analytiquement le rayon de giration R vaut : R = 
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L’équation différentielle de la déformée est :

La pente de la tangente en un point est :

Le déplacement suivant y, du point considéré d’abscisse “x”est :


V - 2 : Equation de la déformée

a – On intègre l’équation (1) sur les différents tronçons de la poutre.

b – On détermine les constantes : Conditions aux limites

c – On détermine l’équation de la déformée


Abaques Coefficient de concentration de contraintes en flexion:
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